Thiastannacyclohexane $(R_2SnS)_3$ und -adamantane $(RSn)_4S_6$

Synthesen, Eigenschaften und Strukturen

Hermann Berwe und Alois Haas*

Lehrstuhl für Anorganische Chemie II der Ruhr-Universität Bochum, Postfach 102148, D-4630 Bochum 1

Eingegangen am 3. Februar 1987

Cyclotristannathiane (4) werden durch Umsetzung von R_2SnCl_2 (1) mit Na₂S · 9H₂O bzw. (CH₃)₃SiSSi(CH₃)₃ erhalten. Analog werden Hexathiatetrastannaadamantane (5) aus RSnCl₃ (2) und obigen Sulfenylierungsagentien synthetisiert. Die Reaktion zwischen Dimesitylzinndichlorid (1a) und Na₂S · 9H₂O führt je nach Reaktionsbedingungen entweder zum entsprechenden Dithiadistannacyclobutan (3) oder zu Cyclotristannathian 4a. Die Konstitutionen der Cyclostannathiane 3, 4 und 5 wurden durch Intensitätsmessungen der geminalen ¹¹⁹Sn-¹¹⁷Sn-Kopplung ermittelt. Berechnete Werte ließen sich experimentell bestätigen. Die Beweisführung wird im Fall von 4c durch die im ¹¹⁷Sn-NMR-Spektrum aufgezeigte Intensitätsveränderung ergänzt. Die an (C₆F₅Sn)₄S₆ (5g) durchgeführte Röntgenstrukturanalyse belegt die in Lösung aufgezeigte Geometrie.

Die Oxide des Phosphors, Arsens und Antimons der Formel E_4O_6 weisen Adamantanstruktur auf. Ein entsprechendes N_4O_6 ist bisher unbekannt geblieben. Ersetzt man jedoch die Sauerstoffatome durch Pseudosauerstoff und anschließend den Stickstoff durch Pseudostickstoff, so gelangt man zu $N_4(CH_2)_6$ bzw. $(CH)_4(CH_2)_6$. Beide Moleküle haben Adamantanstruktur. Ganz allgemein kann festgestellt werden, daß Adamantane aus Elementen der 5. und 6. Hauptgruppe im Verhältnis 4:6 gebildet werden. Die Struktur bleibt unverändert, wenn die Elemente durch Pseudo- oder Paraelemente ersetzt werden¹⁾. Diese Feststellung führte zur Synthese von $(HSi)_4X_6^{2)}$ und $(CF_3Ge)_4X_6^{3)}$ (X = S, Se), für die mittels Röntgenstrukturanalyse Adamantanstruktur bestätigt werden konnte.

R SnCi.	RSnCl_		R		R
1	2	p o đ p	Mesityl 1 - Naphthyl 4 - CH ₃ C ₆ H ₄ 4 - CH ₃ OC ₆ H ₄	e f g h	4 - FC ₆ H ₄ 3 - FC ₆ H ₄ C ₆ F ₅ C ₆ H ₅

Ziel der vorliegenden Arbeit war es, Zinn-Schwefel-Verbindungen der Formel (RSn) $_4S_6$ zu synthetisieren und deren Struktur zu ermitteln. Dabei ist R so gewählt worden, daß es einen großen Massenanteil an der Molmasse einnahm, was zu einer verbesserten Löslichkeit führen sollte. Unter den bisher synthetisierten "Organozinnsesquisulfiden" ist lediglich für (CH₃Sn) $_4S_6^{4}$ Adamantanstruktur nachgewiesen worden. Alle anderen Verbindungen mit passender Stöchiometrie^{5,6} sind wegen ihrer physikalischen Eigenschaften

Thiastannacyclobexanes $(R_2SnS)_3$ and -adamantanes $(RSn)_4S_6$: Syntheses, Properties, and Structures

Cyclotristannathianes (4) are obtained from R_2SnCl_2 (1) and $Na_2S \cdot 9H_2O$ or $(CH_3)_3SiSSi(CH_3)_3$. Analogously, hexathiatetrastannaadamantanes are prepared from $RSnCl_3$ (2) and the sulfenylating agents mentioned before. The reaction between dimesityltin dichloride (1a) and $Na_2S \cdot 9H_2O$ depending on the reaction conditions yields either the corresponding dithiadistannacyclobutane (3) or cyclotristannathiane 4a. The structure of the cyclostannathianes 3, 4, and 5 are elucidated by determining the intensity ratio of geminal ¹¹⁹Sn-¹¹⁷Sn couplings. Calculated data are confirmed by experimental values. Additional proof is provided by measuring the change of intensity ratio in the ¹¹⁷Sn-NMR spectrum of 4c. X-ray structure determination proved for $(C_6F_3Sn)_4S_6$ (5g) to have the same geometry as in solution.

schlecht untersucht und teilweise mit polymeren Strukturen⁶ in Verbindung gebracht worden. Als Ausgangsmaterialien dienten die Chlorstannane 1a - h und 2a - h.

Da für das Gelingen der Folgereaktionen sehr reine Edukte benötigt werden, war ein Überarbeiten der Literaturverfahren notwendig. Während Monoorganozinntrichloride⁷⁻¹¹ durch Redistributionsreaktionen aus Tetraarylzinnverbindungen bzw. aus Arylzinnchloriden¹² zugänglich sind, führt das gleiche Verfahren bei Diarylzinndichloriden nur selten zu reinen Verbindungen. ($R = Ph^{13}$); 4-FC₆H₄⁸⁾; 3-FC₆H₄⁷⁾). Hier konnte durch Modifizierung eines Literaturverfahrens der Zugang zu Verbindungen mit hoher Reinheit geschaffen werden. Die Synthese gelingt durch Ummetallierung von SnCl₂ mit Diarylquecksilber im komplexierenden Solvens Acetonitril^{9,14,15}. Die erwartete Solvatisierung läßt sich ¹¹⁹Sn-NMR-spektroskopisch nachweisen: In CDCl₃ gelöstes (4-CH₃C₆H₄)₂SnCl₂ (1c) bzw. (4- $CH_3OC_6H_4)_2SnCl_2$ (1d) weist δ (¹¹⁹Sn) bei -20.3 bzw. -13.0, in CH₃CN/C₆D₆ dagegen tieffeldverschoben bei -87.5 bzw. -78.5 auf. Das primär erzeugte Lösungsmitteladdukt ist instabil und gibt das Lösungsmittel leicht ab. Zur Umwandlung der so dargestellten Chlorstannane, wobei die Synthesen von [2,4,6]-(CH₃)₃C₆H₂]₂SnCl₂ (1a) und $2,4,6-(CH_3)_3C_6H_2SnCl_3$ (2a) erstmals beschrieben werden, in Stannathiane bedurfte es wegen der Empfindlichkeit einiger Aryl-Zinn-Bindungen der Entwicklung neuer Darstellungsverfahren. So sind z.B. Derivate des Typs $(C_6F_5)_n SnX_{4-n}$ (X = Hal) außerordentlich empfindlich gegenüber einer durch Halogenid-Ionen katalysierten Hydrolyse, die zum Teil¹⁶ in Sekunden unter Bildung von Pentafluorbenzol abläuft.

Chem. Ber. 120, 1175-1182 (1987) © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1987 0009-2940/87/0707-1175 \$ 02.50/0

Der Einsatz von Silylsulfiden für eine Reihe von Umsetzungen erwies sich als zweckmäßig, da so das Auftreten ionischer Species vermieden werden konnte. Die Verwendung von Hexamethyldisilathian stellt eine wichtige Erweiterung bisheriger Synthesekonzepte dar. Auf diesem präparativ einfachen und spektroskopisch leicht zu verfolgenden Weg konnten sowohl Vertreter der 1,3,5-Trithia-2,4,6-tristannacyclohexane (4) als auch Derivate der Thiastannaadamantane (5) synthetisiert werden, Schema 1.

Schema 1

Bei weniger reaktiven Chloriden arbeitet man dagegen besser in mit Argon gesättigten Aceton-Wasser-Mischungen¹⁷⁾ bei ca. 0°C und verwendet als Sulfenylierungsagens Na₂S \cdot 9H₂O gemäß Schema 2.

Schema 2

n $R_2SnCl_2 + n Na_2S \longrightarrow (R_2SnS)_n + 2 n NaCl$ **3**: n = 2 4a, b, d, h : n = 34 RSnCl₃ + 6 Na₂S $\xrightarrow{0 \circ C}$ (RSn)₄S₆ + 12 NaCl 5a-e, h 2,4,6-(CH₃)₃C₆H₂ 4e, 5e 3, 4a, 5a 4-FC₆H₄ 4f, 5f 3 - FC 4b, 5b 1 - Naphthyl 5g 4-CH3C6H4 4c, 5c 4h, 5h 4d, 5d 4-CH30C6H4

Die mit 1a und Na₂S $9H_2O$ durchgeführten Untersuchungen liefern, abhängig von den Reaktionsbedingungen, unterschiedliche Produkte. Setzt man die Reaktionspartner in Ethanol zuerst bei 30°C um und erhitzt dann auf 70°C, so bildet sich, wie ¹¹⁹Sn-NMR-spektroskopisch gezeigt werden konnte, der Sn-S-Vierring (3). Wird sofort bei 70°C umgesetzt, so entsteht 4a. Die Produkte 3 und 4 werden kristallin erhalten, wobei 4c farblose Plättchen aus 2-Propanol und 4f Nadeln aus Ethanol liefern. Als farblose Pulver fallen 5b, e, f und h an. Aus Toluol kristallisieren 5a, c und g in Form wasserklarer Kristalle. Lediglich 5d entsteht als gelbliches Pulver, das infolge Zersetzung bei ca. $40-50^{\circ}$ C nicht umkristallisiert werden konnte.

Strukturen der Sn-S-Verbindungen

¹¹⁹Sn-NMR-Spektren

Die Strukturen der Verbindungen 3, 4 und 5 wurden durch ein in der ¹¹⁹Sn-NMR-Spektroskopie neuartiges Verfahren ermittelt. Betrachtet man das symmetrische Hexamethyldistannathian, so erwartet man im ¹¹⁹Sn-NMR-Spektrum primär ein Singulett, hervorgerufen durch die Resonanz der Moleküle, die über ein ¹¹⁹Sn-Atom verfügen. Eine geminale Sn-Sn-Kopplung zu einem Dublett erzeugen nur die Moleküle, die sowohl einen ¹¹⁹Sn- als auch einen ¹¹⁷Sn-Kern besitzen. Die Häufigkeit ist durch das natürliche Vorkommen der beteiligten Isotope festgelegt.

Abb. 1. Theoretische Aufspaltungsmuster und Intensitätsverteilungen der Kopplung für a) $(CH_3)_3SnSSn(CH_3)_3$, b) $(R_2SnS)_3$ (4) und c) $(RSn)_4S_6$ (5)

Für den idealen Fall gleicher Relaxationszeiten der beiden Isotope (was im Fall des Zinns relativ gut erfüllt ist), erhält man das in Abb. 1a angegebene Aufspaltungsmuster. Das für (CH₃)₃SnSSn(CH₃)₃ gemessene ¹¹⁹Sn-NMR-Spektrum weist δ ⁽¹¹⁹Sn) bei 86.9 auf, und ²J(¹¹⁹Sn-¹¹⁷Sn) beträgt 196.7 Hz. Das gemessene Integralverhältnis der Signale ist 92.8:7.2. In Cyclotri(stannathianen) besitzt jedes Zinnatom jeweils zwei geminale Zinn-Nachbarn. Liegt eine symmetrische Struktur vor, kann ein Dublett durch zwei "Isomere" gebildet werden: In erster Näherung¹⁸⁾ ergibt sich das in Abb. 1b angegebene Signalbild. Analoge Überlegungen führen bei Hexathiatetrastannaadmantanen unter der Bedingung dreier magnetisch äquivalenter Kerne zu der in Abb. 1c aufgeführten theoretischen Aufspaltung. Es sollte daher möglich sein, zwischen den zwei in Abb. 1c abgebildeten Strukturen A und B zu unterscheiden, da in B $J(Sn_1-Sn_2)$ ungleich $J(Sn_1-Sn_4)$ ist. Das ¹¹⁹Sn-NMR-Spektrum von [(4-CH₃ · C₆H₄)₂SnS]₃ (4c) (siehe Abb. 2a) zeigt das erwartete Muster mit einer experimentell bestimmten Intensitätsverteilung von 86.3:13.7.

Abb. 2. Breitband-Protonenentkoppelte $^{119}Sn-NMR-Spektren von ^a)$ [(4-CH₃C₆H₄)₂SnS]₃, $^{b)}$ [(4-FC₆H₄)₂SnS]₃ und $^{c)}$ (4-FC₆H₄Sn)₄S₆

Zur Absicherung dieses Ergebnisses wurde auch das ¹¹⁷Sn-NMR-Spektrum aufgenommen. Wegen der größeren natürlichen Häufigkeit des ¹¹⁹Sn-Isotops sollte das Verhältnis leicht zu Gunsten der Dublett-Intensität verschoben werden. Mit 84.3:15.7 wird dies experimentell bestätigt. Kopplungskonstanten und chemische Verschiebungen der beiden Spektren stimmen auf Grund des nahezu fehlenden Isotopeneffekts bei Zinn innerhalb der Fehlergrenzen überein. Führt man ein meßbar koppelndes Atom in den Liganden ein, so wird eine Aufspaltung der drei Signale erwartet. Dies kann am Beispiel von [(4-FC₆H₄)₂SnS]₃ (4e) demonstriert werden. Das in Abb. 2b angegebene ¹¹⁹Sn-NMR-Spektrum zeigt die Triplettaufspaltung der drei Signale und weist ein Intensitätsverhältnis von 84.8:15.2 auf. Diese Werte entsprechen den berechneten zufriedenstellend. Das nur einen 4-FC₆H₄-Rest pro Zinnatom enthaltende (RSn)₄S₆ (5e) zeigt, wie aus Abbildung 2c ersichtlich, erwartungsgemäß nur drei Dubletts. Mit einem gemessenen Intensitätsverhältnis von 79.5:20.5 ist der errechnete Wert relativ gut erreicht.

Die in Tab. 1 aufgeführten chemischen Verschiebungen, ²J(¹¹⁹Sn-¹¹⁷Sn)-Kopplungskonstanten und deren Intensitätsverteilung zeigen eindeutig, daß 3, 4 und 5 unterschiedliche Strukturen aufweisen. Auffallend ist die bei 3 und 4a beobachtete Hochfeldverschiebung und die abweichende Kopplungskonstante von 4a bezogen auf 4b-h. Aus der Intensitätsmessung der NMR-Signale von 3 geht aber eindeutig hervor, daß es sich um eine Verbindung mit nur einem magnetisch äquivalenten geminalen Zinn-Nachbarn handelt. Da eine unsymmetrische Struktur auf Grund des ¹¹⁹Sn-NMR-Spektrum ausgeschlossen werden kann, ist nur ein Vierring-System mit Synthese und analytischen Daten in Einklang zu bringen. Somit stellt 3 den ersten aromatisch substituierten Zinn-Schwefel-Vierring dar. Die starke sterische Wechselwirkung der beiden raumerfüllenden Mesitylgruppen bedingt offensichtlich eine Winkeldeformation, die den Vierring stabil werden läßt. Das Ergebnis stimmt mit

Tab. 1. ¹¹⁹Sn-NMR-Daten für 3, 4 und 5

Verbin-	δ(¹¹⁹ sn) [ppm]	${}^{2}_{J} \left({{}^{119}_{Sn} - {}^{117}_{Sn}} \right) \\ \left[{Hz} \right]$	Intensitätsverteilung der Kopplung				
dung			Integralverhältnis	Peakhöhenverhältnis	Mittelwert	Berechnet	
3	-25.8	160.6	91.7 : 8.3	93.0 : 7.0	92.4 : 7.6	92.4 : 7.6	
<u>4a</u>	-48.4	229.9	85.8 : 14.2	85.3 : 14.7	85.6 : 14.4	84.8 : 15.2	
4b	+22.5	187.8	86.3 : 13.7	86.2 : 13.8	86.3 : 13.7	84.8 : 15.2	
4 <u>c</u>	+21.0	193.2	87.5 : 12.5	85.1 : 14.9	86.3 : 13.7	84.8 : 15.2	
<u>4</u> ⊆α)	+21.3	192.8	85.0 : 15.0	83.7 : 16.3	84.3 : 15.7	82.8 : 17.2	
4d	+25.0	192.9	86.7 : 13.3	85.1 : 14.9	85.9 : 14.1	84.8 : 15.2	
4e	+22.9	200.2	85.3 : 14.7	84.3 : 15.7	84.8 : 15.2	84.8 : 15.2	
4 <u>f</u>	+16.7	204.9	84.1 : 15.9	83.8 : 16.2	84.0 : 16.0	84.8 : 15.2	
-	-	-	-	-	-	-	
<u>4h</u>	+17.8	194.8	85.6 : 14.4	86.0 : 14.0	85.8 : 14.2	84.8 : 15.2	
5 <u>a</u>	+40.3	293.0	· · · · · · · · · · · · · · · · · · ·	——— b)———	· · · · · · · · · · · · · · · · · · ·	<u>.</u>	
5 <u>b</u>	+78.5	267.5	83.0 : 17.0	77.6 : 22.4	80.3 : 19.7	77.2 : 22.8	
5 <u>c</u>	+86.4	260.7	82.5 : 17.5	80.4 : 19.6	81.5 : 18.5	77.2 : 22.8	
<u>5</u> ₫	+88.7	266.6		b)			
5 <u>e</u>	+85.6	273.0	80.5 : 19.5	78.4 : 21.6	79.5 : 20.5	77.2 : 22.8	
5 <u>f</u>	+82.0	277.5	81.5 : 18.5	77.7 : 22.3	79.6 : 20.4	77.2 : 22.8	
<u>5</u> g	+46.4	290.0		c)			
 5 <u>b</u>	+84.3	263.0	81.3 : 18.7	78.8 : 21.2	80.1 : 19.9	77.2 : 22.8	

^{a)}¹¹⁷Sn-NMR-Daten. – ^{b)} Wegen der schlechten Löslichkeit der Verbindungen besaßen die Spektren eine geringe Auflösungsqualität. – ^{c)} Durch die Multiplett-Struktur kann keine zuverlässige Berechnung durchgeführt werden.

Befunden der Alkylreihe¹⁹⁾ überein. Der stabilisierende Einfluß der Mesitylgruppen zeigt sich auch im trimeren Dimesitylzinnoxid²⁰⁾. Die gemessenen Intensitätsverhältnisse für ²J[¹¹⁹Sn-¹¹⁷Sn] in **4a** entsprechen denen von **4b** – **h** und stimmen mit den für Cyclotristannathiane berechneten Werten gut überein. Dennoch erscheinen Zweifel an der Sechsringstruktur angebracht, da die Hochfeldverschiebung von δ die Tetraederkoordination in Frage stellt und die vergrößerte Kopplungskonstante eine merkliche S-Sn-S-Winkelaufweitung aufzeigt.

Röntgenographische Untersuchungen²¹⁾ ergaben für 4h eine Sechsringstruktur mit $S-Sn-S = 111.9^{\circ}$. Die in Tab. 1 aufgeführten Daten stimmen mit denen von 4h gut überein, so daß auch 4a-f Sechsringstruktur aufweisen. Molmassebestimmungen für 4f ergeben die für einen Sechsring zu erwartenden Werte. Vergleichbare δ-und J-Werte zeigen auch 5b-f sowie 5h. Die für 5a und 5g beobachtete Hochfeldverschiebung ist substituentenbedingt und steht nicht im Widerspruch zu den Werten der anderen Substanzen. Sie tritt, wie Tab. 2 zeigt, auch bei den Ausgangsverbindungen auf. Die in der gleichen Größenordnung liegenden Kopplungskonstanten beweisen die strukturelle Verwandtschaft von 5a-h. Aus den Intensitätsverteilungen kann geschlossen werden, daß jedes Sn-Atom von drei äquivalenten geminalen Zinnatomen hochsymmetrisch umgeben wird. Eine solche tetraedrische Koordination der 4 Zinnatome ist für Adamantane typisch.

Tab. 2. ¹¹⁹Sn-Werte in ppm für RSnCl₃, R₂SnCl₂ und R₄Sn

R	RSnCl ₃ (2)	$R_2SnCl_2(1)$	R₄Sn
C_6H_5 $4-CH_3C_6H_4$ $4-FC_6H_4$ $3-FC_6H_4$ $4-CH_3OC_6H_4$ 1-Naphthyl Mesityl C_6F_5	$ \begin{array}{r} -61.6 \\ -57.2 \\ -57.5 \\ -63.3 \\ -54.3 \\ -53.4 \\ -83.6 \\ -90.5 \end{array} $	$\begin{array}{r} -26.5 \\ -20.3 \\ -20.6 \\ -31.8 \\ -13.9 \\ -8.0 \\ -50.4 \\ -\end{array}$	$\begin{array}{r} -128.1^{38)} \\ -120.1 \\ -117.8 \\ -130.0 \\ -115.4 \\ -116.7 \\ -218.0 \end{array}$
4-FC ₆ H ₄ 3-FC ₆ H ₄ 4-CH ₃ OC ₆ H ₄ 1-Naphthyl Mesityl C ₆ F ₅	57.5 63.3 54.3 53.4 83.6 90.5	-20.6 -31.8 -13.9 - 8.0 -50.4 -	-117.8 -130.0 -115.4 -116.7 -218.0

Röntgenstrukturanalyse von 5g²²⁾

Die Zelldimensionen betragen a = 13.894(5), b = 13.981(5), c = 14.908 Å; $\alpha = 88.55(3), \beta = 88.71(3), \gamma = 61.68$ (3)°, V = 2548.3 Å³, Raumgruppe P1 (triklin), $d_{ber} = 2.01$ gcm⁻³.

Wie Abb. 3 zeigt, besitzt der Sn_4S_6 -Kern von **5g** eindeutig Adamantanstruktur, und die in Tab. 3 angegebenen Strukturparameter weisen eine hohe Übereinstimmung mit denen von (CH₃Sn)₄S₆²³⁾ auf.

Abb. 3. Struktur von 5g und Numerierung der Atome ($C_6F_5 \cong C$)

Atomkoordinaten von **5g** sind in Tab. 4 aufgeführt. Das aus Aceton umkristallisierte **5c** fällt in Form farbloser Blättchen an. Die Röntgenstrukturanalyse ergab für den Einkristall nachfolgende Zellparameter: a = b = 13.53, c = 56.53Å, $\alpha = \beta = \gamma = 90^{\circ}$; V = 10348.43 Å³, Raumgruppe P4₂₂ (tetragonal), Strahlung: Co- K_{α} (1.7902 Å), Fe-Filter.

Tab. 3. Bindungsabstände und -winkel in 5g mit Standardabweichungen

Bindungslangen in A	
Sn = -C = -2,15(1)	Sn = 3 - C = 13 = 2,13 (2)
Sn 1 - S 3 = 2,40 (1)	Sn 3 - S 1 = 2,39(1)
Sn 1 - S 5 = 2,41 (1)	Sn 3 - S 2 = 2,38 (1)
Sn 1 - S 6 = 2,40 (1)	Sn 3 - S 3 = 2,41 (1)
Sn 2 - C 7 = 2,12 (2)	Sn 4 - C 19 = 2,16 (1)
Sn 2 - S 1 = 2,40 (1)	Sn 4 - S 2 = 2,40 (1)
Sn 2 - S 4 = 2,40 (1)	Sn 4 - S 4 = 2,39 (1)
Sn 2 - S 6 = 2,39 (1)	Sn 4 - S 5 = 2,38 (1)
C 2 - F 2 = 1,33 (3)	C5 - F5 = 1,28(3)
C 3 - F 3 = 1,29 (3)	C6 - F6 = 1,32(3)
C 4 - F 4 = 1,35 (2)	C - C = 1,40 (0)
Bindungswinkel in °	
$S_3 - Sn_1 - S_5 = 113.8(3)$	S 1 - Sn 2 - S 4 = 113.6 (2)
$S_3 - S_{n-1} - S_6 = 111.6$ (3)	$S_1 - S_1 - S_2 - S_6 = 111.6$ (3)
S = S = S = 1 = S = 111.9 (3)	5 4 - 5n 2 - 5 6 = 110.8 (2)
$S_1 = S_1 + S_2 = 114.8$ (2)	52 - 5n 4 - 54 = 1145(2)
$S_1 = S_2 = S_2 = 110 \ \mu (3)$	$S_{2} = S_{2} = S_{2$
$s_{2} = s_{1} - s_{2} - s_{3} - s_{3} = 111.5$ (2)	S = 4 - 5 $S = 111.8$ (3)
Sn 2 - S 4 - Sn 4 = 104,0 (3)	Sn 2 - S 1 - Sn 3 = 103,8 (2)
Sn 1 ·· S 5 - Sn 4 ≈ 103,4 (2)	sn 3 - s 2 - sn 4 = 104, 3 (3)
Sn 1 - S 6 - Sn 2 = 103,6 (3)	Sn 1 - S 3 - Sn 3 = 102,7 (3)
C 1 - Sn 1 - S 3 = 108,1 (7)	C 7 - Sn 2 - S 1 = 109,0 (5)
C 1 - Sn 1 - S 5 = 102,4 (4)	C 7 - Sn 2 - S 4 = 104,3 (5)
C 1 - Sn 1 - S 6 = 108,3 (6)	C7 - Sn 2 - S6 = 106,9 (5)
C 13 - Sn 3 - S 1 = 106.8 (6)	C 19 - Sn 4 - S 2 = 106.1 (5)
C 13 - Sn 3 - S 2 = 107.1 (5)	C 19 - Sn 4 - S 4 = 106.6 (5)
C 13 - Sn 3 - S 3 = 105.7 (5)	C 19 - Sn 4 - S 5 = 107.2 (3)

Aus heißem Toluol scheidet sich **5a** mit 0.5 mol CH₃C₆H₅ in Form großer, wasserklarer Kristalle aus. Die vorläufigen Ergebnisse der Röntgenstrukturanalyse zeigen eindeutig das Sn-S-Adamantangerüst, jedoch konnte eine exakte Bestimmung der Molekülgeometrie nicht erhalten werden. Die Elementarzelle hat die Gitterkonstanten a = b = 16.926 und c = 31.813 Å: wahrscheinliche Raumgruppe $I4_1$ (tetragonal).

Massenspektren

Die Massenspektren der Thiastannaadamantane 5e, f, g, h entsprechen bezüglich ihrer Bruchstücke den Abbaumustern vergleichbarer Substanzen²⁴⁾ und stehen in Einklang mit der adamantanoiden Struktur. Mittels chemischer Ionisation gelang die Molmassenbestimmung von 5c und 5g. Während die Stabilität von 5c unter Meßbedingungen nur die Ermittlung der Molekülmasse zuläßt, ließen sich für 5g die Meßparameter so optimieren, daß der Molekülpeak gut aufgelöst erhalten und mit theoretischen, für ein Adamantan errechneten Isotopenmuster²⁵⁾ korreliert werden konnten. Infolge geringer Flüchtigkeit werden für 5a, b, d keine Massenspektren erhalten.

Tab. 4. Atomkoordinaten von 5g mit Standardabweichungen $(\times 10^4)$. *Atome mit anisotropen Temperaturfaktoren verfeinert.

Atom	х	Y	z	Ueq
Sn(1)	1224(1)	-1274(1)	3427(1)	50(1)*
Sn(2)	1012(1)	597(1)	-1762(1)	45(1)*
Sn (3)	-615(1)	-930(1)	-1696(1)	44(1)*
Sn(4)	1942(1)	-2007(1)	1011(1)	42 (1) *
S(1)	1190(5)	-1180(5)	-1478(4)	52(3)*
S(2)	1969(5)	-324(5)	709(4)	53(3)*
S(3)	1131(6)	477 (5)	3242(4)	63(4)*
S(4)	228(5)	-1949(5)	749(4)	53(3)*
S(5)	2578 (5)	-2646(5)	2484(4)	56(3)*
S(6)	-539(5)	-1171(5)	3285(4)	62(3)*
C(1)	1819(15)	-1881(15)	4752(9)	77(17)*
C(2)	1846(15)	-2846(15)	5052(9)	117(25)*
C(3)	2339(15)	-3320(15)	5866(9)	83(18)*
C(4)	2805(15)	-2829(15)	6379(9)	121(22)*
C(5)	2778(15)	-1864(15)	6078(9)	86(20)*
C(6)	2285(15)	-1390(15)	5265(9)	77(18)*
C(7)	2535(11)	544(15)	-1542(11)	55(13)*
C(13)	-547(16)	-2469(11)	-1451(11)	67(17)*
C(19)	3105(12)	-3166(11)	87 (8)	40(10)*
F(2)	1466(15)	-3346(14)	4528(11)	115(1)
F(3)	2323(15)	-4221(14)	6057(11)	115(1)
F(4)	3255(15)	-3280(14)	7174(11)	115(1)
F(5)	3245 (15)	-1454(14)	6545(11)	115(1)
F(6)	2357(15)	-509(14)	5026(11)	115(1)

Herrn Prof. Dr. J. Wei β , Anorganische Chemie, Institut der Universität Heidelberg, danken wir für die Durchführung der Röntgenstrukturuntersuchungen. Der Firma Schering AG, Bergkamen, sind wir für eine großzügige Spende von Ausgangschemikalien dankbar.

Experimenteller Teil

Luft- und feuchtigkeitsempfindliche Substanzen wurden in einer Glove-Box, gefüllt mit Argon (99.994%, getrocknet über CaCl₂ und P₂O₅) gehandhabt. Glasgeräte wurden zu Beginn einer Umsetzung bei ca. 300°C in einem Argonstrom ausgeheizt. Die verwendeten Ausgsangsverbindungen HgR₂ (R = 4-CH₃C₆H₄²⁶⁾, 4-CH₃OC₆-H₄²⁷⁾, 1-Naphthyl²⁶⁾, 2,4,6-(CH₃)₃C₆H₂²⁸⁾, SnR₄' (R' = 4-CH₃C₆H₄²⁹⁾, 4-FC₆H₄²¹, 3-FC₆H₄⁷¹, C₆F₅³⁰⁾, 4-CH₃C₆H₄³¹), [(CH₃)₃Si]₂S³²⁾, C₆F₃HgCH₃³³⁾, R₂SnCl₂ (1), RSnCl₃ (2) wurden nach bekannten Literaturverfahren hergestellt.

IR-Spektren: Feste Substanzen als KBr-Preßlinge, Flüssigkeiten als Kapillarfilm zwischen KBr-Platten. Schwache Banden werden nicht aufgeführt. Bruker FT-Spektrometer IFS 85. - NMR-Spektren: Bruker WM 250 FT-Spektrometer. Interne Locksubstanz und Lösungsmittel C₆D₆ oder CDCl₃. Interne Standards: ¹H, ¹³C und ²⁹Si TMS, ¹⁹F CFCl₃ ^{117,119}Sn Sn(CH₃)₄. Negatives Vorzeichen bedeutet Hochfeldverschiebung. Die Intensitätsverhältnisse in den ^{117,119}Sn-NMR Spektren werden stets als Integral- und Intensitätsverhältnis (Peakhöhen) bestimmt. Beide Zahlenwerte sind im experimentellen Fall selten gleich, da auf Grund der Computerauswertung Rauschpeaks gelegentlich bei der Integration berücksichtigt werden. Bei schlecht aufgelösten Spektren führt dies zu größer werdenden Abweichungen, wobei die Integralverhältnisse etwas mehr vom theoretischen Wert differieren als die Höhenverhältnisse. In der Diskussion wird generell der Mittelwert verwendet (siehe Tab. 1). - Massenspektren: Varian MAT CH5 oder 7, 70 eV. Emission 100 µA, Bei Fragmenten mit Isotopenverteilungsmuster wird nur der intensivste Peak angeführt. – Molmassen: Chemische Ionisation, Finnigan-MAT 8230. Aufnahmebereich 800 bis 1500 Masseneinheiten, Reaktionsgas NH_3 (negative Ionen), Cycluszeit 0.975s/1 s pro Dekade.

Röntgenstrukturanalyse von 5g: Aus Benzol kristallisiert 5g in Form großer, wasserklarer Kristalle mit 2.5 mol C₆H₆. Ein Kristall von 0.2 × 0.3 × 0.7 mm Größe diente zur Sammlung von Reflexen. Die Molekülstruktur von 5g konnte aus 6319 Reflexen ($3^{\circ} \le 2 \Theta \le 60^{\circ}$), erhalten mit einem Syntex R 3/AEDII, Zähltechnik: Θ -2 Θ , Mo-K_a-Strahlung (0.71073 Å), mit Hilfe direkter Methoden (SHELXTL) abgeleitet werden. Die Feuchtigkeitsempfindlichkeit der Substanz und die Temperaturschwingungen der Benzolringe im Kristall ließen eine genauere Aussage zur Molekülsymmetrie nicht zu (R = 0.098, $R_w = 0.042$).

Dimesitylzinndichlorid (1a): In einem ausgeheizten Cariusrohr mit Teflonventil wird die Lösung von 20.4 g (46.4 mmol) Dimesitylquecksilber²⁸⁾ und 9.7 g (51 mmol) SnCl₂ in 250 ml CH₃CN 15 h unter Rückfluß erhitzt. Danach werden 150 ml Toluol hinzugefügt, und es wird weitere 12 h zum Sieden erhitzt. Das Reaktionsgemisch wird bei ca. 40 °C über eine Umkehrfritte, bedeckt mit etwa 0.5 cm Kieselgel, filtriert, das Filtrat i. Vak. zur Trockene eingedampft und der Rückstand aus Toluol/CH₃CN (100:60) umkristallisiert. Ausb. 10.45 g (52.6%), Schmp. 185 °C. – ¹³C-NMR: δ = 20.9 (4-CH₃), 24.7 (2-, 6-CH₃), 139.6 (C-1), 143.7 (C-2,6), 129.9 (C-3,5), 141.3 (C-4). – MS: m/z (%) = 428 (36, M⁺), 413 (5, M⁺ – CH₃) 393 (71, R₂SnCl⁺), 358 (5, R₂Sn⁺), 309 (72, RSnCl₂⁺), 274 (13, RSnCl⁺), 238 (75, R₂⁺), 223 (56, R₂⁺ – CH₃), 208 (30, R₂⁺ – 2 CH₃) 193 (10, R₂⁺ – 3 CH₃), 178 (3, R₂⁺ – 4 CH₃), 155 (77, SnCl⁺), 119 (100, R⁺ = C₉H₁⁺), 104 (84, C₈H₈⁺)

 $\begin{array}{cccc} C_{18}H_{22}Cl_2Sn~(428.0) & \text{Ber. C}~50.52 & H~5.18 \\ & & \text{Gef. C}~50.4,~50.5 & H~5.2,~5.1 \end{array}$

Mesitylzinntrichlorid (2a): Ein Gemisch aus 10.45 g (24.4 mmol) 1a und 8.06 g (30.9 mmol) SnCl₄ wird bei 130°C 24 h umgesetzt. Nach fraktionierender Destillation erhält man eine wasserklare Flüssigkeit, die rasch kristallisiert. Ausb. 10.45 g (62%), Sdp. 115–117°C/0.04 Torr, Schmp. 80–80.5°C – ¹H-NMR (CDCl₃): δ 2.57 [6 H, 2,6-CH₃, ⁴J(^{117/119}Sn, H) = 13.7 Hz], 2.26[3H, 4-CH₃, ⁶J(Sn, H) = 7.6 Hz], 6.94 [2H, Aromaten-H, ⁴J(Sn, H) = 61.0 Hz]. – ¹³C-NMR (CDCl₃): δ = 24.8 [q, J = 127.2 Hz, ³M (^{117/119}Sn, ¹³C) = 57.0 Hz, 2C, 2,6-CH₃], 21.2 (q, J = 127.2 Hz, 4-CH₃), 135.0 (C-1), 143.4 [²J (¹¹⁹Sn, ¹³C) = 80.1, ²J (¹¹⁷Sn, ¹³C) = 76.7 Hz, C-2], 130.1 [¹J (¹³C, H) = 158.9, ³J (^{117/119}Sn, ¹³C) = 124.8 Hz, C-3], 143.6 [⁴J (^{117/119}Sn, ¹³C) = 23.4 Hz, C-4].

$$C_9H_{11}Cl_3Sn (344.2)$$
 Ber. C 31.40 H 3.22
Gef. C 31.24 H 3.25

Tetra-1-naphthylzinn: Nach Quintin³⁴⁾ werden 23.1 g (100 mmol) 1-Naphthylmagnesiumbromid, gelöst in Tetrahydrofuran, mit einer Lösung von 6.5 g (25 mmol) SnCl₄ in Benzol 15 h unter Rückfluß erhitzt. Die Lösung wird auf Eis gegossen, dann wird mit 50 ml verd. Salzsäure versetzt und mit Toluol/Ether (1 : 1) extrahiert. Nach Abdampfen des Lösungsmittels verbleibt ein zäher Rückstand, der mit Toluol verrieben und zur weiteren Reinigung auf einem Tonteller abgepreßt wird. Ausb. 4.3 g (28%), Schmp. 160~165°C (Lit. 160.5³⁵), 310³⁶⁾ °C). – MS: m/z (%) = 628 (15, M⁺), 501 (47, R₃Sn⁺), 374 (8, R₂Sn⁺), 254 (44, R₂⁺), 247 (9, RSn⁺), 127 (100, R⁺ = C₁₀H₇⁺), 120 (5, Sn⁺).

$$C_{40}H_{28}Sn (627.4)$$
 Ber. C 76.58 H 4.50
Gef. C 77.8, 77.8 H 4.7, 4.8

2,2,4,4-Tetramesityl-1,3-dithia-2,4-distannacyclobutan (3): In einem 500-ml-Zweihalskolben werden 1.28 g(3.0 mmol) Dimesitylzinndichlorid bei 40°C in 100 ml Ethanol und 50 ml Toluol vorgelegt.

Hierzu wird bei ca. $25-30^{\circ}$ C eine Lösung von 0.72 g (3.0 mmol) Na₂S · 9H₂O in 50 ml Ethanol getropft. Nach 1 h bei Raumtemp. und 12h bei 70°C wird abgekühlt und von einem geringfügigen Niederschlag abfiltriert. Die klare Lösung wird eingeengt, der Rückstand mit Wasser verrieben und erneut abgesaugt, wobei mit etwas 2-Propanol gewaschen wird. Rohausb. 0.89 g (76%). Das weiße Pulver wird aus 60 ml Petrolether (60-85°C) umkristallisert. Ausb. 0.40 g (34%), wasserklare Kristalle, Schmp. 206°C. – ¹³C-NMR (CDCl₃): $\delta = 24.4$ (8C, 2,6-CH₃), 21.0 (4C, 4-CH₃), 141.2 (4C, C-1), 143.7 (8C, C-2,6) 128.8 (8C, C-3,5), 139.5 (4C, C-4). – IR: 3017 cm⁻¹, (s, br), 2971 (s, br), 2911 (s, br), 2858 (s, br), 1596 (m), 1554 (br), 1447 (vs, br), 1401 (m), 1289 (s), 1029 (m, br), 851 (vs), 702 (m), 578 (m), 542 (vs).

2,2,4,4,6,6-Hexamesityl-1,3,5-trithia-2,4,6-tristannacyclohexan (4a): In einem 1-l-Dreihalskolben werden 5.14 g (12 mmol) Dimesitylzinndichlorid in 400 ml Ethanol suspendiert. Hierzu wird bei 70°C langsam eine Lösung von 3.32 g (13.8 mmol, 15% Überschuß) Na₂S·9H₂O in 240 ml Ethanol getropft. Aus der zunächst klaren Lösung scheidet sich langsam ein weißer Niederschlag ab. Anschließend wird bei 70°C (4h) sowie bei 20°C (12h) gerührt und filtriert. Rohausb. 4.31 g (92%). Das Produkt wird aus 450 ml Petrolether (60-85°C) umkristallisiert, wobei von etwas Ungelöstem abfiltriert werden muß. Ausb. 2.76 g (59%), Schmp. 244°C. - ¹³C-NMR (CDCl₃): δ = 25.0 [12C, 2,6-CH₃, ³J(^{117/119}Sn,¹³C) = 40.1, ${}^{1}J({}^{13}C,{}^{1}H) = 126.5 \text{ Hz}], 21.0 [6C, 4-CH_3, {}^{1}J({}^{13}C,{}^{1}H) = 127.0 \text{ Hz}],$ 140.5 (6C, C-1), 143.9 [12C, C-2,6, ${}^{2}J({}^{117/119}Sn, {}^{13}C) = 49.6 \text{ Hz}$], 128.6 $[12C, C-3,5, {}^{3}J({}^{117/119}Sn, {}^{13}C) = 61.0, {}^{1}J({}^{13}C, {}^{1}H) = 154.5 \text{ Hz}], 138.6$ (6C, C-4). – IR: Im aufgenommenen Bereich $4000-400 \text{ cm}^{-1}$ besteht kein signifikanter Unterschied zum IR-Spektrum von 3.

2,2,4,4,6,6-Hexa-1-naphthyl-1,3,5-trithia-2,4,6-tristannacyclohexan (4b): In einem 250-ml-Dreihalskolben, ausgestattet mit Rückflußkühler, Rührer und Tropftrichter, werden 2.10 g (4.7 mmol) Di-1-naphthylzinndichlorid¹⁵⁾ bei 40°C in 150 ml Ethanol gelöst. Hierzu werden bei 40°C 1.14 g (4.7 mmol) Na₂S · 9H₂O, gelöst in 70 ml Ethanol, getropft. Bereits während des Zutropfens bildet sich ein weißer Niederschlag. Es wird 2h bei 30°C gerührt, auf Raumtemp. abgekühlt und filtriert. Der Rückstand wird mit Ethanol gewaschen und über P₄O₁₀ getrocknet. Das Rohprodukt (\approx 100%) wird aus Cyclohexan umkristallisiert, wobei ein kristallines Lösungsmitteladdukt gebildet wird. Ausb. 1.38 g (67%), Schmp. 152–153°C (Zers.).

C ₆₆ H ₅₄ S ₃ Sn ₃ (1293.4)	Ber.	C 61.00	H 4.19	S 7.40
	Gef.	C 61.7. 61.5	H 3.8. 4.1	S 7.3. 7.5

Aus diesem Addukt läßt sich das solvatfreie Produkt durch Erhitzen auf 130° C/ 10^{-3} Torr gewinnen. Ausb. 1.27 g (66%), Schmp. 218°C (Zers.) (Lit.¹¹⁾ 215°C).

 $\begin{array}{c} C_{60}H_{42}S_3Sn_3 \ (1215.2) \\ Ber. \ C \ 59.30 \\ Gef. \ C \ 58.9, \ 58.9 \\ H \ 3.5, \ 3.4 \\ S \ 8.0 \\ Sn \ 30.0, \ 29.7 \\ \end{array}$

2,2,4,4,6,6-Hexakis (4-methylphenyl)-1,3,5-trithia-2,4,6-tristannacyclohexan (4c): In einem 100-ml-Schlenkhalskolben mit Rückflußkühler und Trockenrohr werden 3.01 g (8.1 mmol) Di-ptolylzinndichlorid⁹⁾ in 30 ml wasserfreiem Pentan gelöst und bei 0°C tropfenweise (Septum/Spritze) mit 1.52 g (8.5 mmol) Hexamethyldisilathian versetzt. Es wird 2h bei 20°C und anschließend 15 h unter Rückfluß gerührt, wobei sich langsam ein weißer Niederschlag bildet. Das Gemisch wird bei 20°C an Luft filtriert und der feste Rückstand aus 2-Propanol umkristallisiert. Farblose Plättchen, Ausb. 1.02 g (38%), Schmp. $194-195^{\circ}$ C (Lit.³⁷⁾ $188-189^{\circ}$ C). – IR: 3031 cm⁻¹ (m), 3007 (m), 1589 (m), 1492 (s), 1445 (m, br), 1391 (s), 1311 (m), 1210 (m), 1185 (s), 1069 (s), 1017 (s), 793 (vs), 581 (m), 475 (vs).

 $\begin{array}{rrrr} C_{42}H_{42}S_3Sn_3 \ (999.1) & \mbox{Ber. C} 50.49 & \mbox{H} \ 4.24 \\ & \mbox{Gef. C} \ 50.1, \ 49.8 & \mbox{H} \ 4.3, \ 4.1 \end{array}$

2,2,4,4,6,6-Hexakis (4-methoxyphenyl)-1,3,5-trithia-2,4,6-tristannacyclohexan (4d): In einem 100-ml-Zweihalskolben werden 2.01 g (5.0 mmol) Bis(4-methoxyphenyl)zinndichlorid¹⁴⁾ in 20 ml Ethanol bei 20°C zu einer Lösung von 1.2 g (5.0 mmol) Na₂S ·9H₂O in 10 ml Wasser getropft. Es wird 15 min gerührt und anschließend abgesaugt. Der weiße Rückstand wird mit Wasser gewaschen und über P₄O₁₀ getrocknet. Das Rohprodukt (1.06 g) wird aus Chloroform/ Ethanol umkristallisiert. Ausb. 0.83 g (46%), Schmp. 152–153°C (Lit.¹⁴⁾ 95°C.

$$\begin{array}{c} C_{42}H_{42}O_6S_3Sn_3 \ (1095.1) & \mbox{Ber. C} \ 46.07 \ \ \ H \ \ 3.87 \\ Gef. \ \ C \ \ 45.1 \ \ \ \ H \ \ 3.6 \end{array}$$

2,2,4,4,6,6-Hexakis (4-fluorphenyl)-1,3,5-trithia-2,4,6-tristannacyclohexan (4e): In einem 50-ml-Dreihalskolben mit Destillationsbrücke und Argonanschluß werden 3.8 g (10 mmol) Bis(4fluorphenyl)zinndichlorid⁸⁾ unter Argon tropfenweise (Spritze/Septum) unter Rühren mit 1.8 g (10 mmol) Hexamethyldisilathian versetzt. Nach vollständiger Zugabe bildet sich eine Lösung, die 30 min bei Raumtemp. gerührt und dann langsam auf ca. 90°C aufgeheizt wird. Die Vorlage der angeschlossenen Destillationsbrücke muß gekühlt werden, um überdestillierendes Chlortrimethylsilan auffangen zu können. Nach ca. 2h ist der größte Teil (85%) der ber. Ausb. an Me₃SiCl überdestilliert, und man erhält im Destillationskolben einen farblosen, festen Rückstand. Nach Versetzen mit 15 ml wasserfreiem Benzol wird unter Rühren 20 min unter Rückfluß erhitzt, die leicht trübe Lösung über eine Umkehrfritte filtriert, das Benzol i. Vak. abdestilliert, der Rückstand mit Pentan verrieben und an der Luft abgesaugt. Das Rohprodukt (2.8 g) wird aus 170 ml Ethanol umkristallisiert. Ausb. 2.22 g (65%), Schmp. $187.5 - 88.5^{\circ}C. - {}^{13}C-NMR$ (CDCl₃): $\delta = 135.0$ [6C, C-1, ${}^{1}J({}^{117/}$ ¹¹⁹Sn,¹³C) \approx 646, ⁴J(¹⁹F,¹³C) = 3.8 Hz], 137.1 [12C, C-2,6 ²J(^{117/} 119 Sn, 13 C) \approx 52, ${}^{3}J({}^{19}$ F, 13 C) = 7.6, ${}^{1}J({}^{13}$ C, 1 H) = 164 Hz], 116.1 $[12C, C-3,5, {}^{3}J({}^{117/119}Sn, {}^{13}C) \approx 73, {}^{2}J({}^{19}F, {}^{13}C) = 19.1, {}^{1}J({}^{13}C, {}^{1}H) =$ 164 Hz], 164.2 [6C, C-4, ${}^{1}J({}^{19}F, {}^{13}C) = 249.9$ Hz.]. - ${}^{19}F$ -NMR $(CDCl_3): \delta = -109.1 [6F, 4-F), {}^{5}J^{119}Sn(Sn, F) = 16.0 Hz]. - IR:$ 1580 cm⁻¹ (vs), 1491 (vs), 1388 (s), 1304 (m), 1230 (vs), 1163 (vs), 1064 (s), 1017 (m), 815 (vs), 504 (vs), 413 (s). C₃₆H₂₄F₆S₃Sn₃ (1022.8)

 $\begin{array}{c} C_{36} H_{24} F_{6} S_{35} S_{13} (1022.5) \\ \text{Ber. C } 42.27 & \text{H } 2.37 & \text{S } 9.40 & \text{Sn } 34.81 \\ \text{Gef. C } 42.6, 42.4 & \text{H } 2.4, 2.6 & \text{S } 9.7, 9.4 & \text{Sn } 34.4, 34.4 \end{array}$

2,2,4,4,6,6-Hexakis (3-fluorphenyl)-1,3,5-trithia-2,4,6-tristannacyclohexan (4f): Wie bei 4e angegeben, werden 3.8 g (10 mmol) Bis(3-fluorphenyl)zinndichlorid unter Argon mit 1.8 g (10 mmol) Hexamethyldisilathian umgesetzt. Die dabei entstehende Lösung wird 30 min bei Raumtemp. gerührt und dann langsam auf 90°C aufgeheizt. Das überdestillierte (CH3)3SiCl wird in der eisgekühlten Destillationsvorlage aufgefangen (ca. 85%, Dauer 2h). Anschlie-Bend werden 15 ml wasserfreies Benzol hinzugefügt, 20 min wird unter Rückfluß gerührt und die leicht trübe Lösung filtriert. Benzol wird i. Vak. abdestilliert, der Rückstand mit Pentan verrieben und an der Luft abgesaugt. Das Rohprodukt (2.94 g) wird aus Ethanol umkristallisiert. Man erhält farblose, nadelförmige Kristalle. Ausb. 2.26 g (66%), Schmp. 139°C. - ¹³C-NMR (CDCl₃): $\delta = 141.6$ (6C, C-1, 121.8 [6C, C-2, ${}^{2}J({}^{19}F, {}^{13}C) = 21.0, {}^{2}J({}^{117/119}Sn, {}^{13}C) = 57 \text{ Hz}],$ 162.7 [6C, C-3, $J(^{19}F, ^{13}C) = 252.7$ Hz], 117.6 [6C, C-4 ${}^{2}J({}^{19}F, {}^{13}C) = 21.0 \text{ Hz}$], 130.4 [6C, C-5, ${}^{3}J({}^{19}F, {}^{13}C) = 6.7, {}^{3}J({}^{117/}$ 119 Sn, 13 C) = 87 Hz], 130.8 [6C, C-6, $^{4}J(^{19}F,^{13}C) = 3.8, ^{2}J(^{117/119})$ Sn, ¹³C) ≈ 50 Hz]. - ¹⁹F-NMR (CDCl₃): $\delta = -110.7$ [6 F, 3-F), ⁴J(^{117/119}Sn,F) = 38.7 Hz]. - IR: 1590 cm⁻¹ (s), 1582 (s), 1572 (s), 1472 (s), 1416 (vs), 1262 (s), 1209 (vs), 1162 (m), 1091 (m), 998 (s), 901 (m), 870 (m), 851 (s), 782 (vs), 682 (vs), 657 (m), 522 (s), 432 (s). C₃₆H₂₄F₆S₃Sn₃ (1022.8) Ber. C 42.27 H 2.37 S 9.40

Gef. C 42.0, 42.0 H 2.5, 2.4 S 9.4, 9.4 Molmasse 970 (kryoskop. in Benzol)

2,2,4,4,6,6-Hexaphenyl-1,3,5-trithia-2,4,6-tristannacyclohexan (**4h**): In einem 100-ml-Zweihalskolben wird zu einer Lösung von 2.4 g (10 mmol) Na₂S \cdot 9H₂O in 25 ml Wasser bei Raumtemp. eine Lösung von 3.43 g (10 mmol) Diphenylzinndichlorid¹³ in 20 ml Ethanol getropft. Nach 15 min wird abgesaugt und mit Wasser gewaschen, anschließend über P₄O₁₀ getrocknet. Das Rohprodukt wird aus Ethanol umkristallisiert. Ausb. 2.24 g (73%), Schmp. 180°C (Lit.³⁹⁾ 183°C).

1,3,5,7-Tetramesityl-2,4,6,8,9,10-hexathia-1,3,5,7-tetrastanna-adamantan (5a): Die Lösung von 2.05 g (8.6 mmol) Na₂S \cdot 9H₂O in 20 ml Aceton/Wasser (Argon gesättigt) (1:1) wird auf 0°C gekühlt und langsam mit 1.87 g (5.4 mmol) Mesitylzinntrichlorid, gelöst in 5.5 ml Aceton, tropfenweise versetzt. Man rührt bei 20°C 12 h, setzt 10 ml Wasser hinzu und filtriert nach 10 min. Der Niederschlag wird gründlich mit Wasser gewaschen und über P₄O₁₀ i. Vak. getrocknet. Ausb. 1.47 g (95%).

Das Rohprodukt wird aus 100 ml Toluol umkristallisiert, wobei von wenig Ungelöstem abfiltriert werden muß. Die Lösung wird langsam abgekühlt, und man erhält große, wasserklare Kristalle, die 0.5 mol Toluol enthalten. Ausb. 0.97 (63%), Schmp. 246-247°C.

 $\begin{array}{c} C_{36}H_{44}S_6Sn_4\cdot 0.5 \ C_7H_8 \ (1190.0) \\ \text{Ber. C } 39.87 \ H \ 4.07 \ S \ 16.17 \\ \text{Gef. C } 39.9, \ 39.3 \ H \ 4.1, \ 4.2 \ S \ 15.7, \ 15.3 \end{array}$

1.3,5,7-Tetra-1-naphthyl-2,4,6,8,9,10-hexathia-1,3,5,7-tetrastannaadamantan (**5b**): Die Lösung von 4.34 g (18.1 mmol) Na₂S \cdot 9H₂O in 40 ml Aceton/Wasser (Argon-gesättigt) (1:1) wird bei 0°C tropfenweise mit 4.04 g (11.5 mmol) 1-Naphthylzinntrichlorid¹¹), gelöst in 10 ml Aceton, versetzt. Es wird über Nacht bei Raumtemp. gerührt, mit 50 ml Wasser versetzt und nach 10 min der Niederschlag abgesaugt. Das Rohprodukt wird gründlich mit Wasser gewaschen und i. Vak. über P₄O₁₀ getrocknet. Ausb. 2.66 g (79%), Schmp. 265–275°C (Zers.).

C40H28S6Sn4 (1175.4)

Ber. C 40.86 H 2.40 S 16.36

Gef. C 40.6, 40.3 H 2.4, 2.5 S 16.4, 16.0

1,3,5,7-Tetrakis(4-methylphenyl)-2,4,6,8,9,10-hexathia-1,3,5,7-tetrastanna-adamantan (5c): Zu einer stark gerührten Lösung von 13.0 g (54.1 mmol) Na₂S·9H₂O in 75 ml mit Argon gesättigtem Wasser und 45 ml Aceton wird schr langsam bei -5 bis 0°C die Lösung von (36.1 mmol) p-Tolylzinntrichlorid⁹ in einer Mischung von 30 ml mit Argon gesättigtem Wasser und 40 ml Aceton getropft. Das Gemisch wird 4 h bei 0°C gerührt und filtriert. Der Rückstand wird mit Wasser gewaschen, über P₄O₁₀ i. Vak. getrocknet, das Rohprodukt zur Kristallation in 200 ml Aceton suspendiert und die Suspension bei 20°C 12 h gerührt. Die nun kristalline Substanz wird abgesaugt und an Luft getrocknet. Ausb. 5.15 g (55%), farblose, blättchenförmige Kristalle, Schmp. 255–260°C (Zers.). – IR: 1491 cm⁻¹ (m), 1442 (m, br), 1389 (s, br), 1311 (m), 1210 (m), 1185 (s), 1069 (s), 1014 (s), 788 (vs), 579 (m), 475 (vs).

 $C_{28}H_{28}S_6Sn_4$ (1031.7)

Ber. C 32.60 H 2.74 S 18.65 Sn 46.02 Gef. C 32.6, 32.5 H 2.7, 2.9 S 17.6 Sn 45.0, 44.8 Molmasse 1026 (dampfdruckosmometr. in Benzol bei 20°C) Molmasse 1032 (MS, chemische Ionisation) 1,3,5,7-Tetrakis(4-methoxyphenyl)-2,4,6,8,9,10-hexathia-1,3,5,7tetrastanna-adamantan (5d): Zu einer Lösung von 8.68 g (36.1 mmol) Na₂S · 9H₂O in 100 ml Aceton/Wasser (Argon-gesättigt) (1:1) wird sehr langsam bei 0°C die Lösung von 8.00 g (24.1 mmol) (4-Methoxyphenyl)zinntrichlorid¹⁰ in 60 ml Aceton/Wasser (1:1) getropft. Es wird 2 h bei 0°C nachgerührt und abgesaugt, mit Wasser gründlich gewaschen und das Produkt über P₄O₁₀ i. Vak. getrocknet. Ausb. 5.73 g (86%). Das gelbe Pulver konnte nicht umkristallisiert werden, da bereits bei 40-50°C rasche Verfärbung infolge Zersetzung auftrat. Die Verunreinigungen konnten durch mehrmaliges Suspendieren in Aceton teilweise entfernt werden. Die instabile, etwa 90-95% reine Substanz wurde nur ¹¹⁹Sn-NMR-spektroskopisch charakterisiert.

1,3,5,7-Tetrakis(4-fluorphenyl)-2,4,6,8,9,10-hexathia-1,3,5,7-tetrastanna-adamantan (5e): Zu einer stark gerührten Lösung von 8.0 g (33.3 mmol) Na₂S · 9H₂O in 12 ml mit Argon gesättigtem Wasser wird bei Raumtemp. die Lösung von 7.18 g (22.4 mmol) (4-Fluorphenyl)zinntrichlorid⁸⁾ in 40 ml Aceton getropft. Hierbei tritt eine schwache Wärmetönung auf, eine Niederschlagsbildung unterbleibt. Es wird 2h bei 20°C nachgerührt, sodann werden 50 ml Aceton/Wasser (1:1) zugetropft, wodurch die Niederschlagsbildung angeregt wird. Nach weiteren 12h Rühren wird der Niederschlag abgesaugt und gründlich mit Wasser gewaschen. Das Produkt wird über P₄O₁₀ i. Vak. getrocknet. Ausb. 4.91 g (84%), Schmp. $\approx 260^{\circ}$ C (Zers.). $- {}^{19}$ F-NMR (Dioxan/CDCl₃): $\delta = -108.5$ [(m, 4F, 4-F), ${}^{5}J({}^{119}Sn, {}^{19}F) = 19.7 \text{ Hz}]. - \text{MS:} m/z (\%) 921 (<1, R_{3}Sn_{4}S_{5}^{+}),$ 834 (<1, $R_3Sn_3S_6^+$), 738 (2, $R_3Sn_3S_3^+$), 651 (1, $R_3Sn_2S_4^+$), 587 (2, $R_3Sn_2S_2^+$), 555 (2, $R_3Sn_2S^-$), 532 (7, R_4SnS^+), 500 (10, R_4Sn^+), 437 $(5, R_3SnS^+)$, 405 (100, R_3Sn^+), 329 (3, R_2SnF^+), 310 (53, R_2Sn^+), 247 (10, RSnS⁺), 215 (73, RSn⁺), 190 (26, R₂⁺), 139 (10, SnF⁺), 120 $(9, Sn^+), 95 (20, R^+ = 4 - FC_6 H_4^+).$

 $\begin{array}{c} C_{24}H_{16}F_4S_6Sn_4 \ (1047.6) \\ \text{Gef. C } 27.52 \ H \ 1.54 \ S \ 18.37 \ Sn \ 45.32 \\ \text{Gef. C } 26.8 \ H \ 1.5 \ S \ 17.2 \ Sn \ 46.2 \end{array}$

1,3,5,7-Tetrakis(3-fluorphenyl)-2,4,6,8,9,10-hexathia-1,3,5,7-tetrastanna-adamantan (5f): In einem 100-ml-Schlenkkolben mit Destillationsbrücke werden unter Argon 9.96 g (31,1 mmol) (3-Fluorphenyl)zinntrichlorid⁷⁾ tropfenweise bei 10°C mit 8.30 g (46.5 mmol) Hexamethyldisilathian versetzt (Septum/Spritze). Unter deutlicher Erwärmung setzt Niederschlagsbildung nach Zugabe von ca. 75% des Disilathians ein. Nach Beendigung des Zutropfens wird 1 h bei Raumtemp, gerührt und dann langsam erhitzt, wobei Chlortrimethylsilan in eine gekühlte Destillationsvorlage überdestilliert. Nachdem ca. 80% der ber. Menge aufgefangen sind, tauscht man Destillationsbrücke gegen Rückflußkühler und setzt dem Ansatz 40 ml wasserfreies Benzol zu. Es wird 10 min unter Rückfluß gerührt, von wenig Ungelöstem filtriert und mit 200 ml Petrolether versetzt. Der entstandene farblose Niederschlag wird abfiltriert und über P₄O₁₀ i. Vak. getrocknet. Ausb. 4.61 g (57%), Schmp. $\approx 190^{\circ}$ C (Zers.). $- {}^{19}$ F-NMR (Nitrobenzol/CDCl₃): $\delta = -109.9$ [4F, 3-F), ${}^{4}J({}^{119}\text{Sn}, {}^{19}\text{FSn-F}) = 48.7 \text{ Hz}]. - \text{MS:} m/z (\%) = 921 (<1,$ $R_{3}Sn_{4}S_{5}^{+}$), 834 (7, $R_{3}Sn_{3}S_{6}^{+}$), 738 (32, $R_{3}Sn_{3}S_{3}^{+}$), 651 (5, $R_{3}Sn_{2}S_{4}^{+}$), 587 (1, R₃Sn₂S₂⁺), 555 (3, R₃Sn₂S⁺), 532 (8, R₄SnS⁺), 437 (4, R₃SnS⁺), 405 (100, R_3Sn^+), 329 (5, R_2SnF^+), 310 (5, R_2Sn^+), 247 (24, $RSnS^+$), 215 (80, RSn⁺), 190 (23, R⁺₂), 139 (50, SnI⁺), 120 (49, Sn⁺), 95 (23, $R^+ = 3 - FC_6 H_5^+$).

 $\begin{array}{c} C_{24}H_{16}F_4S_6Sn_4 \ (1047.6) & \mbox{Ber. C} \ 27.52 \ H \ 1.54 \ S \ 18.37 \ Sn \ 45.32 \\ & \mbox{Gef. C} \ 27.1 \ H \ 1.6 \ S \ 17.5 \ Sn \ 45.1 \end{array}$

1,3,5,7-Tetrakis(pentafluorphenyl)-2,4,6,8,9,10-hexathia-1,3,5,7tetrastanna-adamantan (5g): Die Lösung von 1.99 g (5.07 mmol) (Pentafluorphenyl)zinntrichlorid¹⁶⁾ in 10 ml wasserfreiem Benzol wird bei 10°C tropfenweise mit 1.36 g (7.61 mmol) Hexamethyldisilathian versetzt (Septum/Spritze). Anschließend wird 15 min bei 10°C gerührt und die Suspension über eine Umkehrfritte filtriert, wobei der Rückstand zweimal mit je 5 ml wasserfreiem Benzol gewaschen wird. Das Rohprodukt wird in 35 ml wasserfreiem Toluol kurz erhitzt und von wenig gelblichem Rückstand filtriert. Aus der farblosen Lösung kristallisiert die Substanz in relativ großen Kristallen. Ausb. 0.77 g (46%), Schmp. 250-255°C. - ¹⁹F-NMR $(Toluol/C_6D_6)$: $\delta = -122.3 (8F, 2, 6-F), -157.0 (8F, 3, 5-F), -145.2$ $[4F, 4-F, {}^{3}J({}^{19}F_{p}{}^{19}F_{m}) = 20.3 \text{ Hz}]. - \text{MS:} m/z (\%) = 1071 (16,$ $R_3Sn_4S_3^+$), 1049 (14, $R_3SnS_6^+$), 953 (12, $R_3Sn_3S_3^+$), 938 (8, $R_4Sn_2S^+$), 803 (81, $R_3Sn_2S_2^+$), 771 (90, $R_3Sn_2S^+$), 621 (90, R_3Sn^+), 469 (36, RSn₂S₂⁺), 319 (8, RSnS⁺), 287 (17, RSn⁺), 199 (15, RS⁺), 167 (12, $\mathbf{R}^+ = \mathbf{C}_6 \mathbf{F}_5^+$), 139 (100, $\mathbf{Sn}\mathbf{F}^+$), 120 (51, \mathbf{Sn}^+).

C₂₄F₂₀S₆Sn₄ (1334.4) Ber. C 21.6 S 14.4

Gef. C 21.2, 21.1 \$ 14.3, 14.5

Molmasse 1336 (MS, chemische Ionisation)

1,3,5,7-Tetraphenyl-2,4,6,8,9,10-hexathia-1,3,5,7-tetrastanna-adamantan¹⁷⁾ (5h): Zu einer Lösung von 10 g (33 mmol) $C_6H_5SnCl_3^{(12)}$ in 60 ml Aceton werden bei 20°C tropfenweise 12 g (50 mmol) Na₂S · 9H₂O, gelöst in 18 ml mit Argon gesättigtem Wasser, gegeben. Es setzt bereits beim Zutropfen Niederschlagsbildung ein. Nach 3.5h Rühren bei Raumtemp. wird an Luft filtriert und das Filtrat mit Wasser gründlich gewaschen. Das Rohprodukt (ca. 80%) wird über P_4O_{10} i. Vak. getrocknet und in einer Soxhletapparatur mit Aceton ca. 96 h extrahiert. Ausb. 3.01 g (37%) farbloses Pulver mit hoher statischer Aufladung, Schmp. $\approx 250^{\circ}$ C (Zers.). – IR: 1477 cm^{-1} (m), 1428 (m), 1067 (m), 1019 (m), 995 (m), 801 (m, br), 723 (s), 689 (s), 445 (vs). - MS: m/z (%) = 715 (<1, Ph₃Sn₃S₄⁺), 533 (2, $Ph_3Sn_2S_2^+$), 497 (3, $PhSn_3S_2^+$), 383 (4, Ph_3SnS^+), 351 (7, Ph₃Sn⁺), 306 (14, Ph₂SnS⁺), 274 (3, Ph₂Sn⁺), 229 (4, PhSnS⁺), 197 $(18, PhSn^+), 186 (19, Ph_2S^+), 154 (38, Ph_2^+), 120 (9, Sn^+), 77 (100,$ $Ph^+ = C_6 H_5^+$),

C₂₄H₂₀S₆Sn₄ (975.5) Ber. C 29.55 H 2.07 S 19.72 Gef. C 29.6, 29.8 H 2.2, 2.2 S 19.3, 19.4

CAS-Registry-Nummern

1a: 108343-63-1 / 1b: 33756-22-8 / 1c: 32538-29-7 / 1d: 56541-97-0 / 1e: 17236-61-2 / 1f: 62942-32-9 / 1h: 1135-99-5 / 2a: 108343-64-2 / 2b: 108343-70-0 / 2c: 51353-34-5 / 2d: 51729-79-4 / **2e**: 17236-60-1 / **2f**: 62942-31-8 / **2g**: 1206-47-9 / **2h**: 1124-19-2 / **3**: 108343-65-3 / **4a**: 100365-49-7 / **4b**: 108343-66-4 / **4c**: 106765-85-9 / 4d: 108343-67-5 / 4e: 108343-68-6 / 4f: 108343-69-7 / 4h: 16892-66-3 / 5a: 108343-71-1 / 5b: 108343-72-2 / 5c: 108343-73-3 / 5d: 108343-74-4 / 5e: 108343-75-5 / 5f: 108343-76-6 / 5g: $\frac{108343-77-7}{5h: 38795-86-7} / (2,4,6-(CH_3)_3C_6H_2)_2Hg: 26562-17-4 / (1-Naphthyl)MgBr: 703-55-9 / (1-Naphthyl)_4Sn: 5424-36-2 / (Me_3Si)_2S: 3385-94-2 / ¹¹⁷Sn: 13981-59-4$ 5424-36-2 /

³⁾ A. Haas, H.-J. Kutsch, C. Krüger, Chem. Ber. 120 (1987) 1045.

- ⁴⁾ C. Dörfelt, A. Janeck, D. Kobelt, E. F. Paulus, H. Scherer, J. Organomet. Chem. 14 (1968) P22.
- ⁵⁾ J. G. A. Luijten, Recl. Trav. Chim. Pays-Bas 85 (1966) 873; M. Komura, R. Okawara, Inorg. Nucl. Chem. Lett. **39** (1972) 279; M. Schmidt, H. Schumann, Chem. Ber. **96** (1963) 462.
- ⁶⁾ A. G. Davies, L. Smith, P. J. Smith, J. Organomet. Chem. 39 (1972) 279.
- ⁷⁾ J. M. Angelelli, M. A. Delmas, J. C. Maire, J. P. Zahra, J. Organomet. Chem. 128 (1977) 313. ⁸⁾ J. C. Maire, J. Organomet. Chem. 9 (1967) 271.
- ⁹⁾ K. A. Kocheschkov, M. M. Nad, Ber. Dtsch. Chem. Ges. 67B (1934) 717.
- ¹⁰⁾ G. Matsubayashi, H. Koezuka, T. Tanaka, Org. Magn. Reson. 5 (1973) 529.
- ¹¹⁾ E. I. Pikina, T. V. Talalaeva, K.A. Kocheschkov, J. Gen. Chem. (USSR) (Engl. Transl.) 8 (1938) 1844.
- ¹²⁾ H. Zimmer, H. W. Sparmann, Chem. Ber. 87 (1954) 645.
- ¹³⁾ A. N. Nesmejanov, K. A. Kocheschkov, Ber. Dtsch. Chem. Ges. 63 (1930) 2496.
- ¹⁴⁾ T. V. Talalaeva, N. A. Zaitseva, K. A. Kocheschkov, J. Gen. Chem. (USSR) (Engl. Transl.) 16 (1946) 901.
- ¹⁵⁾ K. A. Kocheschkov, A. N. Nesmejanov, J. Russ. Phys. Chem. Soc. 62 (1930) 1795; Ber. Dtsch. Chem. Ges. 63 (1930) 2496.
- ¹⁶⁾ R. D. Chambers, T. Chivers, J. Chem. Soc. 1964, 478.
- ¹⁷⁾ J. A. Forstner, E. L. Muetterties, *Inorg. Chem.* 5 (1966) 552.
 ¹⁸⁾ Vernachlässigt wird der Fall, daß beide Nachbarn ¹¹⁷Sn-Isotope sind. Dies führt aber wegen der geringen Wahrscheinlichkeit $(\approx 0.6\%)$ zu keiner nennenswerten substantiellen Änderung und wird nicht berücksichtigt.
- ¹⁹ H. Puff, R. Gattermayer, R. Hundt, R. Zimmer, Angew. Chem. **89** (1977) 556; Angew. Chem. Int. Ed. Engl. **4** (1977) 547.
- ²⁰⁾ H. J. Jacobsen, B. Krebs, J. Organomet. Chem. 136 (1977) 333.
- ²¹⁾ G. Dittmar, Diplomarbeit, Univ. Marburg 1965.
- ²²⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52313, des Autors und des Zeitschriftenzitats angefordert werden.
- ²³⁾ D. Kobelt, E. F. Paulus, H. Scherer, Acta Crystallogr., Sect. B, 28 (1972) 2323
- ²⁴ A. Blecher, B. Mathiasch, M. Dräger, Z. Anorg. Allg. Chem. 488 (1982) 177.
- ²⁵⁾ H. Berwe, Dissertation, Univ. Bochum 1986.
- ²⁶⁾ A. N. Nesmejanov, E. J. Kahn, Ber. Dtsch. Chem. Ges. **62B** (1929) 1018
- ²⁷⁾ F. F. Blicke, F. D. Smith, J. Am. Chem. Soc. 51 (1929) 3479.
 ²⁸⁾ R. C. Wade, D. Seyfert, J. Organomet. Chem. 22 (1970) 265.
- ²⁹⁾ T. V. Talalaeva, K. A. Kocheschkov, Zh. Obshch. Khim. 12 (1942) 403. O. Fuchs, H. W. Post, Recl. Trav. Chim. Pays-Bas 78 (1959) 566.
- ³⁰⁾ J. L. W. Pohlmann, F. E. Brinckmann, G. Tesi, R. E. Donadio, Z. Naturforsch. Teil B, 20 (1965) 1.
- ³¹⁾ M. Lesbre, J. Rouet, Chem. Soc. Chim. Fr. 1951, 490.
- 323 D. N. Harpp, K. Steliou, Synthesis 1976, 721.
- ³³⁾ R. D. Chambers, G. E. Coats, J. G. Livingstone, W. K. R. Musgrave, J. Chem. Soc. 1962, 4367.
- 34) C. Quintin, Ing. Chim. 14 (1930) 205.
- ³⁵⁾ M. Lesbre, G. Roques, Congr. Soc. Savantes Paris et Dépts. Sect. Sci. 1953, 423; Chem. Abstr. 49 (1955) 15768 f]. ³⁶ G. Bähr, R. Gelius, Chem. Ber. 91 (1958) 812 und 818.
- ³⁷⁾ W. T. Schwartz jr., H. W. Post, J. Organomet. Chem. 2 (1964)
- ³⁸⁾ B. Wrackmeyer, Ann. Rep. NMR-Spectrosc. 16 (1985) 138.
- ³⁹⁾ H. G. Kuivila, E. R. Jakusik, J. Org. Chem. 26 (1961) 1430.

[28/87]

¹⁾ A. Haas, Chem.-Ztg. 106 (1982) 239, und in Advances in Inorganic and Radiochemistry (Emeleus-Sharpe, Ed.), Vol. 28, S. 167, Academie Press, Inc., New York 1984.

²⁾ A. Haas, R. Hitze, C. Krüger, K. Angermund, Z. Naturforsch., Teil B 39 (1984) 890.